Global well-posedness for the KP-I equation on the background of a non localized solution

نویسندگان

  • Luc Molinet
  • Jean-Claude Saut
  • Nikolay Tzvetkov
چکیده

We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave or the Zaitsev solitary waves which are localized in x and y periodic or conversely).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Space-time Estimates for Linearised Kp-type Equations on the Three-dimensional Torus with Applications

A bilinear estimate in terms of Bourgain spaces associated with a linearised Kadomtsev-Petviashvili-type equation on the three-dimensional torus is shown. As a consequence, time localized linear and bilinear space time estimates for this equation are obtained. Applications to the local and global well-posedness of dispersion generalised KP-II equations are discussed. Especially it is proved tha...

متن کامل

On the low regularity of the fifth order Kadomtsev-Petviashvili I equation

We consider the fifth order Kadomtsev-Petviashvili I (KP-I) equation as ∂tu + α∂ 3 xu + ∂ 5 xu + ∂ −1 x ∂ 2 yu + uux = 0, while α ∈ R. We introduce an interpolated energy space Es to consider the well-posedeness of the initial value problem (IVP) of the fifth order KP-I equation. We obtain the local well-posedness of IVP of the fifth order KP-I equation in Es for 0 < s ≤ 1. To obtain the local ...

متن کامل

Well-posedness and Ill-posedness Results for the Kadomtsev-petviashvili-i Equation

The main results of this paper are concerned with the “bad” behavior of the KP-I equation with respect to a Picard iteration scheme applied to the associated integral equation, for data in usual or anisotropic Sobolev spaces. This leads to some kind of ill-posedness of the corresponding Cauchy problem: the flow map cannot be of class C2 in any Sobolev space.

متن کامل

m at h . A P ] 2 3 Fe b 20 07 GLOBAL WELL - POSEDNESS AND POLYNOMIAL BOUNDS FOR THE DEFOCUSING L 2 - CRITICAL NONLINEAR SCHRÖDINGER EQUATION IN R

We prove global well-posedness for low regularity data for the one dimensional quintic defocusing nonlinear Schrödinger equation. Precisely we show that a unique and global solution exists for initial data in the Sobolev space H(R) for any s > 5 14 . This improves the result in [22], where global well-posedness was established for any s > 4 9 . We use the I-method to take advantage of the conse...

متن کامل

Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data

We consider the defocusing, ˙ H 1-critical Hartree equation for the radial data in all dimensions (n ≥ 5). We show the global well-posedness and scattering results in the energy space. The new ingredient in this paper is that we first take advantage of the term − I |x|≤A|I| 1/2 |u| 2 ∆ 1 |x| dxdt in the localized Morawetz identity to rule out the possibility of energy concentration, instead of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006